Optuna
Installation
uv add 'hypster[optuna]'
# or
uv add optunaUsage
import optuna
from hypster import HP, instantiate
from hypster.hpo.optuna import suggest_values
def model_cfg(hp: HP):
kind = hp.select(["rf", "lr"], name="kind") # hpo_spec omitted: linear/unordered defaults
# ... conditional params ...
return {"model": ("rf", 100, 10.0)}
def objective(trial: optuna.Trial) -> float:
values = suggest_values(trial, config=model_cfg)
cfg = instantiate(model_cfg, values=values)
# ... train/evaluate with cfg["model"] ...
return 0.0Notes
Last updated
Was this helpful?